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Monitoring with Extra Intelligence, Efficiency, and Profitability 
Capturing and storing sensor-based data from power plants in real time is now state of the art. 

However, volatile external factors like e.g. weather, fuel quality, load, etc. make it difficult to assess 

the condition of the plant components based on these data alone. For this, the data have to be 

transformed into valuable information by means of intelligent evaluation. With a monitoring system 

based on Big Data and machine learning, STEAG Energy Services has made a crucial step towards 

achieving this goal. 

 

The ever-inceasing performance capability of the IT hardware is an essential driver for 

developments like Big Data, digitalization, and the Internet of Things. A key technology of 

digitalization is machine learning, i.e. algorithms that automatically analyze correlations existing in 

data and thereby, for instance, make projections (“Predictive Analytics”) or detect recurring patterns 

(“Advanced Pattern Recognition”). 

 
Digital twins by means of machine learning 
In the context of power generation, machine learning can be used to generate digital copies (‘digital 

twins’, Fig. 1) of plants and their components. For quite some time, machine learning has been a 

component of software solutions supporting predictive maintenance by means of data-based, digital 

twins of the process and the plant components. Additionally, current developments in the 

environment of Big Data have the potential to reduce the engineering effort for implementing a 

solution for this maintenance strategy. 

 

 
 
Fig.1: Digital twins for predictive maintenance 

 

 
 



                                                                                                                                                                                               
 
 
 
 
 
Digital Twins show relevant dependencies 
After all, a digital twin of the plant is a mathematical model representing how relevant process 

parameters (outputs, temperatures, mass flows, etc.) depend on the ambient conditions and 

actuating variables of the plant. The model is either based on the physical basic equations 

describing the plant or it can be derived from historical data by means of machine learning. 
The current values of operational measurements can then be compared with the projections of the 

digital twins to detect also creeping changes in the plant condition early and reliably. On the basis of 

this information, it is possible to act predictively in terms of predictive maintenance in order to 

reduce efficiency losses by using the resources efficiently and increase the plant availability. The 

challenge in this context, however, is to detect anomalies in the plant behavior truly reliably while at 

the same time avoiding phantom anomalies. 

 

Using expert knowledge to obtain “High Quality KPIs“ 
Different approaches which, however, complement each other are possible when creating data-

based models: modeling by combining expert knowledge with machine learning or modeling by 

means of autonomous, unsupervised learning (see Fig. 2), largely based on mathematical 

algorithms with minimal engineering groundwork. 

An expert knows the significant key variables for the condition of the process or of a plant section. 

He also knows which influencing variables are required for describing the expected behavior of this 

key variable and which periods of time in the historical data are suitable as reference, i.e. which 

causalities exist in the data. The expert selects the input and output variables of his model 

accordingly. Supervised learning methods will then form the model. This way, digital twins with a 

high accuracy emerge (”High Quality KPIs“). Owing to the selection of particularly informative 

measured values by engineers, significant changes detected by the system can be easily attributed 

to possible faults in order to subsequently decide about further examinations and specific 

maintenance measures respectively. 

 



                                                                                                                                                                                               
 
 
 
 
 

 
Fig. 2: Supervised and unsupervised learning 

 

Autoencoder learns autonomously 
In autonomous learning, in contrast, there is no specification of causalities in the data by the expert. 

It is the task of  “machine learning” to identify existing correlations and to form corresponding 

models. In doing so, the algorithms detect that the data from a plant are not independent of each 

other but are determined by a few key values. Thus algorithms like e.g. the “deep autoencoder” 

identify such variables autonomously and learn the correlations between those and the measured 

values of a plant in an “unsupervised” way. 

 
Identification of essential influencing variables 
An autoencoder (see Fig. 3) is a neural network trained to copy the input values onto the output 

values. The network has several levels of hidden layers of neurons and consists of two parts with a 

“bottleneck“ in the middle. 

It prevents the neural network from just learning input = output and enforces that essential 

influencing variables (“features“) describing the behavior of the input data are identified. 

 

 
Fig. 3: Structure of an autoencoder 



                                                                                                                                                                                               
 
 
 
 
 
 

 
Automatic check of significant deviations 
In an online application for supporting the predictive maintenance, all measurements to be 

monitored are presented to the deep autoencoder. When "learning", the algorithm identifies the 

most important features that describe the plant behavior and how the measurements depend on it 

under “normal“ conditions. In "online" mode, the first part of the autoencoder will then at first 

determine the features describing the current operating condition from the current measured values. 

From these features, the second part calculates the “normal“ values to be expected under the given 

operating conditions for each measured variable. For each measurement, statistical methods are 

applied to automatically check whether possible deviations between the current value and the 

projection are significant. This way, also large sets of measured values can be monitored 

automatedly, and changes in the condition of the plant that are reflected in the measured values can 

be detected very early and, above all, reliably with little engineering effort. This approach to identify 

anomalies in measured values has been successfully applied to data from various power plants 

(conventional power plant and wind energy plant). 

 

Making use of available resources more efficiently 
The economic pressure on power plants is rising more and more. Against the backdrop of 

increasing installed power, the economically efficient operation of fossil-fueled power plants in spite 

of a lower utilization ratio and higher stress on the components due to a more flexible mode of 

operation is becoming increasingly difficult. The funding models for renewable energies, in particular 

for wind energy plants, are changing. Here, too, the profitable operation of wind farms is becoming a 

growing challenge. Thus it is crucial to detect also creeping changes in a plant that indicate 

impending faults or failures involving high losses early and reliably. 

Even experienced personnel cannot fulfill this task as it is becoming more and more difficult with 

increasing variability in the mode of operation of the plant and, moreover, has to be accomplished 

by less and less persons. 

Therefore it is absolutely essential to consistently use the potentials of groundbreaking IT 

developments like e.g. “Big Data“ and ”machine learning“ to give existing software solutions for the 

monitoring of processes and plant components that crucial extra intelligence. 

This leads to powerful new solutions that provide extremely valuable information for identifying 

significant deviations from the regular plant behavior promptly and without high personnel effort. 



                                                                                                                                                                                               
 
 
 
 
 
Available resources can thus be deployed considerably more efficiently, and maintenance 

measures can be planned in an even timelier and more targeted way.  

 

Example: Detection of Anomalies in Power Plant Data Reduces the Fuel Input and Increases 
the Availability 
For the turbo set of the considered 1,100 MW unit, more than 1,200 analog channels exist in the 

DCS. The evaluated data record comprises 5min averages over 60 months, i.e. more than 630 

million averages. An autoencoder as described in the article was generated with a subset of the 

data. The deviations between measured and expected values were calculated for the entire data 

record. Statistical methods of analysis then identify measured values that show significant 

deviations from the normal behavior ("anomalies"). 

 

The results are displayed in heatmaps (Fig. 4). The representation is strongly compressed to 

provide a clear view of the large amount of data. There is one column for each measurement (1,200 

columns altogether). Each line represents one period of time. The autoencoder was applied to 5 min 

data. In the diagram, the results are condensed to months (60 periods for five years). 

 
Combination of autoencoder and statistical analysis detects anomalies 
For each period, the algorithms counted how often the combination of deep autoencoder and 

statistical analysis detected a significant anomaly for the measurement. The periods are marked in 

colors as follows: light blue = no anomaly in this month, dark blue = continuous significant 

anomalies in the considered month, white = plant shutdown. The large white streak in the upper 

area relates to a major overhaul of the unit. 

 

Ruling out anomalies due to overhauls 
As described above, the autoencoder was trained with a subset of the operating data. At first, the 

amount of training roughly corresponds to the data up until a short time before the overhaul. It is 

visible that changes in the plant behavior due to measures in the context of the overhaul were 

correctly identified as anomalies. To represent the changed plant behavior after the overhaul, the 

autoencoder was trained a second time with expanded data containing also operating data from the 

period after the overhaul. The comparison of the results shows that anomalies in later plant 

operation were detected in both cases. Anomalies that occurred due to a changed plant behavior as 

a result of the overhaul work (Fig. 4 left) were selected as regular data by expanding the training 

data and thus, as expected, no longer identified in the expanded heatmap  (Fig. 4 right). 



                                                                                                                                                                                               
 
 
 
 
 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

Fig. 4 Heatmap of the anomalies in a turbo set. Left: Model with ca. 50% learning period. Right: Model with ca. 75% learning period (incl. a small 

subset of the data after the overhaul) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preventing false alarms, reliably identifying significant changes 
Fig. 5 exclusively shows only those measured values for which anomalies occurred in the 

considered period of time. This was the case for only few of the more than 1,200 measurements 

altogether. In fact, this is to be expected for the turbo set of a modern plant. The image shows that 

the outlined method is able to prevent false alarms and yet to reliably detect significant changes. 

For instance, in June 2016 the anomaly in the measurement LBS20CT001 (red in Fig. 5 left) could 

be attributed to a malfunction in an LP extraction due to a defect expansion joint, which can also be 

observed very clearly in the chronological sequence of the extraction temperatures (Fig. 5 right). 

 

The method is able to reliably identify a manageable quantity of suspicious values out of the large 

amount of measured variables, as shown in Fig. 4 and Fig. 5. Moreover, samples have shown that 

the revealed anomalies really correspond to faults or other conditions of the plant that deviate from 

the normal mode of operation. 



                                                                                                                                                                                               
 
 
 
 
 

 

Systematic prevention of greater damages 
In a review at another unit, the system showed a suddenly occurring abnormal running behavior of 

the turbine (Fig. 6). More detailed evaluations indicated a major turbine damage at the IP turbine 

and/or a bearing damage. To prevent even greater damage, the plant was shut down safely. The 

cooling of the turbine was initiated as early as possible, and the endoscopy was prepared. The 

endoscopy confirmed the IP turbine damage. 

 

   

  

 

 

 

 

 

Fig. 6 left: Heatmap of the anomalies in a turbo set (1st half of 2017). Right: Detailed view of an early detected anomaly in the running behavior of 
the turbine 

 
 
Efficient use of available resources 

The tool “anomaly detection“ thus automatedly monitors entire plant sections, allowing the operating 

personnel to focus their attention on the areas where actual changes appear. A systematic analysis 

allows to react to these changes by acting predictively, efficiently deploying the available resources, 

in the context of predictive maintenance. This way, sources of loss are eliminated early and 

Fig. 5 Left: Exclusive view of the anomalies in a turbo set (75% learning period). Right: Detailed view of a detected anomaly  



                                                                                                                                                                                               
 
 
 
 
 
unplanned shutdowns are reduced. The mean specific heat requirement is thus reduced and the 

availability is improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
For more information: 
Phone +49 201 801-4175 

 
STEAG Energy Services GmbH 
System Technologies 

Rüttenscheider Str. 1-3 

45128 Essen 

Germany 

www.steag-systemtechnologies.com 

 


