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[ ] [ ] As Solar and Wind generation is associated with
variability and uncertainties, meeting the targets
[ } [ }of generation in a generation mix , the Power

Grid involves major challenges pertaining the

planning operations, management and
EA-0O protection of the Grid

\ariability can be mitigated by ~With the increase in penetration of
STORAGE Renewable Energy (RE) and with the
increase in the number of EVs, the Grid
Operators face a challenge to maintain the

Grid Reliability, Stability




elin the Colorado\

neighborhood of Basalt
Vista, a microgrid allows 27
households to seamlessly
share electricity  when
needed

An autonomous
comprising of electricity generation, storage, and
consumption.

|IEEE Spectrum : 234 NOV 2020
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* The Basalt Vista autonomous
energy grid uses a 900-
megahertz radio antenna to
communicate with Holy
Cross Energy’s dispatch
center, about 50 kilometers

composed of local units,



Neural
Network

Many obj

Evolutionary
Algorithms

Fuzzy logic

learning is a process of gradually improving
an individual's adaptation ability to its

, _ Evolution is a slow stochastic process
environment by tuning the structure of the

individual at the population level that
determines the basic structures of a
species



Al plays an Important Role in the following Sector

SMART CITY
Smart Public Smart Transport _ Smart Water Smart Health
T Smart Grid .
facilities System delivery system Care
Public
Smart
Home and
Assistive .
Appliances

Niti Aayog. 2018. National Strategy for Artificial Intelligence: #Alforall.

Discussion Paper, June 2018.

https://niti.gov.in/writereaddata/files/ document_ publication/NationalStrategy-
for-Al-Discussion-Paper.pdf.




Enerqgy Management:

Energy management involves the
planning, monitoring, and optimization
of energy consumption in various
sectors to ensure efficient and

sustainable use.




Data-Driven Energy Management and Al/ML
Integration

« Energy management in a power system handles
an immense amount of data from sensors, meters,
and other sources.

« Data is integral for monitoring, control, and
decision-making in power generation, distribution,
and consumption.

« Power systems involve diverse and intricate data
sets, including grid conditions, demand patterns,
and equipment health metrics.

« Handling this complexity requires advanced
analytical approaches.

« Al and ML leverage large datasets to extract
valuable insights from historical and real-time data.

« The more extensive the dataset, the more
accurate and reliable the predictions and
optimizations become.

« The integration of Al and ML with large datasets
is pivotal for optimizing power systems, improving
efficiency, and ensuring a reliable and sustainable
energy future.

ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn
without being explicitly programmed

DEEP LEARNING
Subset of machine learning
in which artificial neural
networks adapt and learn
from vast amounts of data




O Advanced Predictive Analytics:
Challenge: Traditional methods struggle to accurately
predict energy demand, making it challenging to
match production with consumption.

Statistical Model

e
Decision Making Machine Learning
D . g o XD

Analytics

Transformation: Al and ML algorithms analyze vast
datasets, including historical consumption patterns,
weather data, and real-time information, enabling
precise demand forecasting. This ensures more
efficient planning and resource allocation.
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/EI Grid Management and Stability: \
Challenge: Traditional grids face difficulties in managing the
complexities of a modern energy landscape with intermittent
renewable sources.

Transformation: Al and ML contribute to real-time monitoring, fault
detection, and dynamic grid management. These technologies help
balance supply and demand, enhance grid stability, and efficiently

\ integrate renewable energy sources. /
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Renewable Energy Integration: \
Challenge: The unpredictability of renewable
energy sources, such as solar and wind, poses
challenges for grid operators.

Transformation: Al algorithms analyze weather
patterns, historical data, and real-time conditions
to predict renewable energy production. This
allows for better integration into the grid and

effective management of fluctuations. /

G Predictive Maintenance:

K reducing maintenance costs.

N

Challenge: Traditional maintenance practices
are often reactive, leading to downtime and
increased operational costs.

Transformation: Al and ML enable predictive
maintenance by analyzing sensor data and
performance metrics. This allows for the
identification of potential equipment failures

/EI Energy Storage Optimization:

before they occur, minimizing downtime and

4

\ the life of storage infrastructure.

N

Challenge: Efficiently managing energy storage
systems, such as batteries, to maximize their
lifespan and performance.

Transformation: ML models optimize the
charging and discharging cycles of energy
storage systems based on usage patterns, grid
demand, and other variables thereby extending

>




sensors Actuators -8 — Networking and 0 Optimizing Energy Consumption in Smart

Buildings:
) Challenge: Conventional buildings lack

s -y — adaptability to occupants' behavior and
voding [ > environmental conditions.
: ji».‘"'[ N N Transformation: Al-powered systems in smart

' Softmare Pattorm buildings learn and adapt to occupant
/ B preferences, adjusting lighting, heating, and
cooling in real-time. This leads to significant

HVAC system energy savings without compromising comfort.
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[Benefits of Al and ML in Energy Management: J

Improved Efficiency: Al and ML optimize energy consumption patterns, leading to increased operational
efficiency.

Cost Reduction: Smart predictive analytics helps minimize operational costs through better resource
planning and demand forecasting.

Enhanced Sustainability: Al supports the integration of renewable energy sources, promoting a more
sustainable and eco-friendly energy ecosystem.

Real-time Monitoring: Continuous monitoring enables real-time adjustments, ensuring efficient energy use
and quick response to anomalies.

Predictive Maintenance: ML models predict equipment failures, allowing for proactive maintenance and
minimizing downtime.

Optimized Energy Storage: Al optimizes energy storage systems, extending their lifespan and improving
overall efficiency.

Grid Stability: Al contributes to dynamic grid management, enhancing stability and reliability in energy
distribution.

Market Analysis for Trading: ML algorithms analyze market trends, facilitating informed decisions in energy
trading and risk management.

Carbon Emission Reduction: Al applications contribute to the identification of opportunities for reducing
carbon emissions in energy production and consumption.

Adaptability to Changing Conditions: Al and ML systems adapt to evolving energy landscapes, ensuring
resilience in the face of dynamic conditions.



* Electric Load

* Electric Price

* Wind Speed

* Solar Insolation

Forecasting

. ANN Output Nod
* ANFIS
* SVM |

L Hidden Nodes
* ELM

T T T
[ i I
800 900 1000 T100

“W“”’m“ﬂ“”“““’““V““’““‘“’””“WMMW“W*““”‘\ﬂfv“fwwﬂw“”WF"JW”MW”«waMWW*«WMwu{ww ‘




\

Pt-l Pt

00000000000

_—

o Q
N -
¢ - . -
—

LEARNING
ALGORITHM

LEARNING
ALGORITHM

LEARNING
ALGORITHM

LEARNING
ALGORITHM

LEARNING
ALGORITHM

14



PRICE

PRICE

1500

1=ET

1 =200

ITFEan

— e T L B

FiRECCSST

=
] = =N =i = 1 1 =0 A=} 1 540 1 ==
H ¥ ==
DEC 13 — DEC 19
1 BD | L] L] L] L] L] L] L]
n
— TS .l.
150 FORECAST o —
140 —
120 —
.
A -
100 0 —
iy L]
=T : I _
S0 —
-

- ] .I
=L - - - - —]

ED 1 1 1 1 1 1 1 1

=20 a0 =0 =20 100 1 =0 140 160 120

HZLRE



Need for incorporating uncertainties

» When forecast results are presented to end users,
they should be informed as to what extent they
can be trusted.

» Availability of prediction intervals will allow the
decision makers to efficiently quantify the levels of
uncertainties associated with the point forecasts,
and to consider a multiple of solutions for
different conditions.

16



Confidence Intervals and Prediction Intervals
t(x) = f(x) + e(x)

t(x) observed target value

f(x) true regression

e(x) noise with zero mean

Training a ML algorithm is meant to estimate ¢(x) i.e. an approximation of f(x).

It is an estimation of the mean of the distribution of the target values given an input
vector x.

* Two measures of the confidence of this point prediction

1. Confidence intervals: accuracy of our estimate of true regression
i.e. distribution of quantity f(x)- ¢(x)

2. Prediction intervals: estimate of confidence in prediction of targets
themselves i.e. distribution of quantity t(x) - ¢(x)

* tlx)-o(x)= [ f(x)- @(x) ] +e(x)

17
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Maximum Power Point Tracking from
Solar Array



Partially Shaded Solar PV Array Conditions
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Partial Shading on PV Array

“*Cloud

*Tree

*sTall building, Pole, pillars
“*Snow

s Dust particles..... etc



PARTIAL SHADED Patterns

P-V Characteristics ._ LMPP
of partial shaded SPV o

GMPP_ -




Problem Formulation

* The objective function (f) 1s defined as,

max P,,(D,)
max { VPV(Di) x 1 pv(Di)}

fD)

Where, Pp/(D,), VpD; and I,/(D;) are instantaneous power,
voltage and current at duty cycle D;.

e The constraint 1s described as,

0< D, <1

23



Relay Coordination |
Distribution Networ
DG Penetration




» Problem formulation for optimal relay coordination

»The main objective is to minimize total operating time of relay all
primary relay (OF) as well as coordination time interval (CTTI).

FL N,
mln (OF) Z Z ( pri_near prl far )
k=1 i=1
. o ¥ i o * i’
Tll)rl near = TDS Tl — TDS
Ilpn near ) | pri_ far Il , .,
[( —vY [( pri_ far ) _ ]
PS' *CTl . *T. . i i ; /4
t t PS * CY—;atlo * Ictsc
1 mn rnax
TDS™ <TDS, <TDS™. PS;™" <PS; <P§
Types of
Backup OCR characteristi
Standard
andw inverse (SI)

+
(Vi)
"
inverse (El)




Network Topology storage: Primary/backup relay pairs

Primary and Backup relay
pairs for Near-end faults
Fault | Primar | Backup | Primar | Backup
near to | y Relay | Relay |y Relay | Relay
Relay 1 1 8 1 11
Relay 2 2 3 2 5
6 Bus SyStem Relay 3| 3 10 3 13
Relay 4 4 5 4 1
Relay 5 5 12 5 14
Relay 6 6 3 6 1
Relay 7 7 11 7 2
Relay 8 8 0 8 0
Relay 9 9 13 9 4
Relay
10 10 0 10 0
Relay | 14 11 6
11
Relay
1 12 8 12 2
Relay
13 13 12 13 6
Relay
14 14 10 14 4




Coordination Constraints sets

Limits on Problem Variables
1. Bounds on time dial setting (TDS)

TDS™ <TDS, <TDS™

2. Bounds on pickup current setting
Im'n

max
picp <1, 1

pickup

3.Limits on Primary Operation Time

less than a maximum allowed time delay and more than
some minimum predefined time considering transient

conditions
4.Coordination criteria (Selectivity Constraint):

fo—t, =M

5. For a fault location, both near and far-end primary relays

should operate before their respective back-up relays

Coordination time interval (CTI) generally taken as 0.2 to
0.3



Detailed analysis of 8 Bus System with
ETAP



8 bus system
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ETAP Model of 8 Bus System
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Fault locations and their corresponding near end, far end primary
and backup relays with their CT ratio:

Fault location Primary Primary relay far Backup relay Backup relay Relay no | CT Ratio
relay near end near end far end
end 1 240
Bus 17 8 1 9,7 6
2 240
Bus 18 1 8 6 9,7
3 160
Bus 19 2 9 1 10
4 240
Bus 20 9 2 10 1
5 240
Bus 21 3 10 2 11
Bus 22 10 3 11 2 6 240
Bus 23 4 11 3 12 7 160
Bus 24 11 4 12 3 8 240
Bus 16 5 12 4 13,14 9 160
Bus 25 12 5 13,14 4 10 240
Bus 26 6 13 5,14 8 11 240
Bus 27 13 6 8 5,14 12 240
Bus 28 14 7 1,9 5,13 13 240
Bus 29 7 14 5,13 1,9 14 160




Specifications

|Inffo | Input | Output | OCR | TCC kA | Model Info | Checker | Remarks | Comment |

| GE Muttiin 750,760
OC Level

¢ RElayZ |oc1 v| [+] Enabled

[ Integrated Curves
[] Link TOC + 10C for this level

Manufacturer: GE Multilin

Phase | Newutral I Ground I Sen. Ground I Neg-Seql

Curve Type |ANSI - Bdremely Inverse V|

Type: Overcurrent Directional Relay

Pickup Range | 0.05 - 20 xCT Sec v | Muttiples
Curve type: ANSI Extremely inverse Pickup | 205 “ Step: 0.01

Relay Amps | 205 | | 3075 | Prim. Amps

Time Dial | 0.47 o Step: 0.01

[ Instartaneous

Fickup Range | 0.05 - 20 %xCT Sec w | Multiples
Pickup 20 Step: 0.01

Relay Amps 20 Frim. Amps

Delay Range | 0 - 600 W oZEC

Delay [zec) . Step: 0.01

Directional IEI [ Voltage 51V

e 3] @@ [oK | |conee|




Relay and circuit breaker operation while fault on BUS 17
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Relay and circuit breaker operation while fault on BUS 21
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Relay and circuit breaker operation while fault on BUS 23
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Operating time of relays and circuit breakers while fault on BUS 23

Bus? 5.4 wV

Line-ta-Line [Svmmetrical] faulk on bus: Buz23

[Data Rev.: Baze Config: Maormal Date: 16-03-2015

Time [mz] If [k T1 [mz] T2 [mz] Condition

533 2064 533 Phase - OC1 - 51 - Forward

B33 1000 Trpped by B_4 Phase - OC1 - 51 - Forward
8319 2247 8319 Phaze - OC1 - 51 - Reverze

834 2247 834 Phase - OC1 - 51 - Reverse

939 1000 Trpped by B_11 Phaze - OC1 - 51 - Reverze
95 4 100 Tripped by R_12 Phaze - OC1 - 1 - Reverze
107 107 Phase - OCT - 51 - Forward

117 1000 Trpped by B_3 Phase - OC1 - 51 - Forward




Major
Components

" EV Motor

Automotive Health Monitoring

Failures in
Components

Gear Failure
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Simulators and

Test Setup

Health Monitoring
Fault Diagnosis
Techniques

* Vibration Analysis
. * Noise Monitoring

' *  Motor Current
Signature Analysis

* Infrared
; Thermography

' *  Acoustic Emission

* Sound Quality

"= Acoustic Holography |

and Beam Forming

-Signal Processing, Al, loT and
RUL Prediction
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What does speed independent model means?
A machine learning model that work irrespective of speed conditions is known as speed independent model.

| I :
| 1
[

| 1
| Constant Speed : :
. |

I l ' I
: E Speed Variation wi : |
| a Different Ramp Rate | I
I

| Gﬂ h | I
| Varying Speed T A | I
v AW ) 1.. |

| Al :
I — |
1 Speed Fluctuation with | :
I > Different Ramp Rate ||
[

| Fluctuating Speed 1
| I :
[

! K
! I

Trained Model Early Warning
System

Used techniques in brief
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Data pre-processing

Data profiling, data cleansing, data
transformation, data enrichment etc.

Signal Processing

7|

Fourter Transform, Hilbert Transform,

Empirical Mode Decomposition, Wavelet
Transform etc.

Feature Engineering

Henry Gas Solubility Optimization, Genetic

speed Conbrofer S Charge Amplifier | OR35Analyser = Data Acgusition

Test Bearing with
Hisigarg

F'Lgm'c-Bc[ing test Tig

Model Performance
Evaluation

L3 LIMF L] ._.-l-l"' & i B 9 B
using Mﬂ'."“-'“"b“f Algorithm, Particle Swam Optimization etc.
Algorithms
Hyperparameter Kercl ’
upﬁmiﬂiﬁun T ernels, support vectors, neurons, stride efc.
Classification

ANN, SVM, kNN, Random Forest, Decision
Trees, CNN etc.

Mshirid Sizual Priceing Tehalque

Accuracy, Precision, Recall, F1-Score etc.
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34 2) Intelligent Predictive Maintenance Approaches on Rotating Machines

“Sensor fusion- based approach for bearing fault diagnosis Sound quality based fault diagnosis of bearing

Fre 'mndu -h.l!.c nmhm

1/30/2024
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Two Wheeler Fault Simulator Four Wheeler Fault Simulator

‘ | Cage ot

| | Iom Mol dhetest .

l | boe
| /

i | 3
|

| | ’

| =

| |

: | : Bearing faults
Experimental-setup I 8 9 IR LB

Transfer Learning Based Fault Diagnosis

=

Target Data

Machine Learning Based Fault Diagnosis

Label Space
l (LBy)

Source Task - Target Task
Tasks = [A;P(A,|B;)) Tasky = (ﬁr"(lrlﬂr)l

Knowledge Transfer

The number of thermal images data set nfr |rh bearing condition,

Bearing No. of dataset Thermal image Total

o . T— o - - -
Speed
19 Hz 23 Hz 29 Hz

HB 2100 2100 2100

OR 2100 2100 2100 640 « 40O Raw) 37,800

(13 2100 2100 2100 3232 (Sedected)

BD 2100 2100 2100

cD 2100 2100 2100

LB 2100 2100 2100

*Source : Anurag Choudhary, Tauheed Mian, S. Fatima and

*Source : Anurag Choudhary, T. Mian and S. Fatima, : s
’ Panigrahi, Passive Thermography Based Bearing Faull Dm.\.;nush using

Performance Evaluation Fault Classification Shidieg Windew based Featere Extraction "Convolutional Neural Network Based Bearing Fault
Diagnosis of Rotating Machine Using Thermal Images",
Measurement, pp. 109196, 2021.

I'ransfer Learning with Varying Working Conditions, IEEE Sensor Journal
(2022), doi: 10.1109/JSEN.2022.3164430 19
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Battling climate change: Al can lead the
way for energy solutions

Ajinkya Waradpande | | Updated on November 16, 2020 | Published on November 16, 2020

Grid infrastructure and stability Energy Storage Transmission and Distribution
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Optimizing India's Electricity Grid for The Role of Al and ML in Solar

Renewables Using Al and Machine

Energy

ASOKE K. LAHA,
President and CEO,
Interra Information Technologies Inc

Learning Applications

By Jeffrey D. Bean & Kartikeya Singh Smart, Centralized Control Centers

Improved Integration of Microgrids
Improved Safety and Reliability

July 9, 2019
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* Energy Systems Simulation (Grid, Storage, Vehicle etc)
(Model based and Data Driven based approaches)
* Performance Analysis, Monitoring, Maintenance

Other
Computing
paradigm

Neural Natural
Network Computing
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